further separated by repeated TLC (Si gel). Known compounds were identified by high field ¹H NMR spectroscopy. Finally, 50 mg 1, 6 mg 2, 80 mg 3, 150 mg 4, 3 mg 5 and 10 mg 7 were obtained.

2α-Acetoxyhelenium lactone (2). Colourless gum, IR $\nu_{\text{max}}^{\text{Col}}$ cm $^{-1}$: 3600 (OH), 1770 (γ-lactone), 1740 (OAc); MS m/z (rel. int.): 246.126 [M – HOAc] $^+$ (9) (C₁₅H₁₈O₃), 55 [C₄H₇] $^+$ (100). CD (MeCN) Δ_{256} + 0.3.

4-O-Tigloyl-6-epi-picrohelenin (5). Colourless gum, IR $\nu_{\rm max}^{\rm CCl}$ (rel. int.): 346.178 [M – HOAc]⁺ (6), 306 [M – HOTigl]⁺ (1), 246 [306 – HOAc]⁺ (6), 228 [246 – H₂O]⁺ (1.5), 218 [246 – CO]⁺ (6.5), 83 [C₄H₇CO]⁺ (100), 55 [83 – CO]⁺ (84). CD (MeCN) Δ₂₆₀ negative.

4-O-Tigloyl-6-epi-autumnolide (7). Colourless gum, IR $v_{\text{max}}^{\text{CCl}_4}$ cm⁻¹: 3620 (OH), 1770 (γ-lactone), 1730 (C=CCO₂R); MS m/z (rel. int.): 362.173 [M]⁺ (2) (C₂₀H₂₆O₆), 262 [M - HOTigl]⁺ (2), 83 [C₄H₇CO]⁺ (100), 55 [83 - CO]⁺ (73).

Acknowledgements—We thank the Deutsche Forschungsgemeinschaft for financial support. E.T. thanks UNESCO project

BUL 77/009 for a stipend.

REFERENCES

- 1 Robinson, H. (1981) Smithson. Contrib. Botany 51, 1.
- 2. Bohlmann, F. and Jakupovic, J. (1979) Phytochemistry 18, 131.
- Hikino, H., Kuwano, D. and Takemoto, T. (1968) Chem. Pharm. Bull. Jpn. 12, 632.
- McPhail, A. T. and Onan, K. D. (1975) J. Chem. Soc. Perkin Trans. 2, 496.
- 5. Dominguez, E. and Romo, J. (1963) Tetrahedron 19, 1415.
- Herz, W., Murari, R. and Blount, J. F. (1979) J. Org. Chem. 44, 1873.
- Bohlmann, F., Zdero, C. and Ahmed, M. (1982) Phytochemistry 21, 1679.
- Herz, W., Subramaniam, P. S. and Dennis, N. (1969) J. Org. Chem. 34, 2915.
- von Dreele, R. B., Petit, G. R., Cragg, R. M. and Ode, R. H. (1975) J. Am. Chem. Soc. 97, 5256.

Phytochemistry, Vol. 22, No. 8, pp. 1824-1825, 1983. Printed in Great Britain.

0031-9422/83\$3.00 + 0.00 Pergamon Press Ltd.

THREE DITERPENES FROM THE RED ALGA SPHAEROCOCCUS CORONOPIFOLIUS*

FRANCESCO CAFIERI, PATRIZIA CIMINIELLO, CIRO SANTACROCE and ERNESTO FATTORUSSO†

Istituto di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, I-80134 Napoli, Italy; †Istituto di Chimica Biorganica, Università di Napoli, Via L. Rodinò 22, I-80138 Napoli, Italy

(Revised received 7 October 1982)

Key Word Index-Sphaerococcus coronopifolius; Rodophyta; diterpenes; presphaerene; bromosphaerenes A and B.

Abstract—Three new diterpenes, presphaerene and bromosphaerenes A and B, have been isolated from the chloroform extract of the red alga Sphaerococcus coronopifolius and their structures determined.

Seven diterpenes have been isolated previously from the red alga *Sphaerococcus coronopifolius* [1-7]. In connection with our investigation of this alga, we have now isolated three further tricyclic diterpenes which we have named presphaerene (1) and bromosphaerenes A (2) and B (3).

Compounds 2 and 3 are closely related to bromosphaerol (4) [2], while 1 possesses the same carbocyclic skeleton as presphaerol (5) [4, 5]. The chloroform extract of S. coronopifolius was chromatographed on a Si gel column. Selected fractions were further purified by rechromatography on prep. TLC (Si gel) to obtain three diterpenes. In order of polarity these were 1 (0.01%), 2

*This work was carried out as part of the project on "Progetto Finalizzato Chimica Fine e Secondaria", C.N.R., Rome.

(0.04%) and 3 (0.02%). The structure of 1 was assigned by comparison of its properties $[\alpha]_D^{20} - 46^\circ$; EIMS 70 eV, m/z: 270 [M]⁺; UV λ_{max} nm: 271 and 279, ¹H NMR: δ 6.94 (1H, d, J = 5.7 Hz), 7.06 (1H, d, J = 5.7 Hz), 7.02 (1H, br s), 3.26 (1H, dd, J = 7 and 11 Hz), 2.92 (1H, m), 2.32 (3H, s), 1.30 (3H, d, d) = 6.8 Hz), 0.94 and 0.88 (3H each, d, d) = 7 Hz) and 0.48 (3H, d) with those of a sample prepared from presphaerol by selenium treatment at 270° for 36 hr as previously described [4, 5].

Structure $\hat{\mathbf{2}}$ was assigned to bromosphaerene A on the basis of its physical and spectral properties $[\alpha]_D^{20} - 143^\circ$; EIMS 70 eV, m/z: 428, 430, 432 [M]⁺; mp 101 – 103°; ¹H NMR: $\delta 0.88$ and 0.97 (3H each, d's, J = 7.5 Hz), 1.31 and 1.66 (3H each, s), 3.46 (1H, m), 3.65 (2H, AB system, J = 10.5 Hz), 4.11 (1H, dd, J = 3.5 and 12 Hz), 5.57 (2H, AB system, J = 10 Hz), which were identical to those of a

compound previously obtained from bromosphaerol by dehydration with phosphorus oxychloride [2].

The crystalline compound 3 has the molecular formula $C_{20}H_{30}Br_2$. The ¹H NMR spectrum contained three methyl signals [doublets at $\delta 0.91$ and 0.98 (3H each, J=7.5 Hz, H-19 and H-20) and a singlet at 0.92 (3H, H-15)], an AB system ($\delta 3.78$ and 3.62, 2H, J=12.5 Hz) attributable to a -CH₂Br group and signal at $\delta 4.13$ (dd, J=3.5 and 10.5 Hz) due to a bromomethine group.

The low-field region of the 1H NMR spectrum contained two 1H broad singlets at $\delta 4.40$ and 5.01 which suggested the presence of an exomethylene group, which was confirmed by its IR spectrum (IR $v_{\rm max}^{\rm CHCl_3}$ cm $^{-1}$: 3050, 1645, 895). A signal is also present as a further coupled AB system at 5.59 (2H, $J_{\rm AB} = 11$ Hz, H-1 and H-2). These spectral data indicated the close relationship between 2 and 3 and suggested that 3 differs from 2 in the position of the double bond in ring C.

Structure 3 was definitively confirmed by accurate chromatographic analysis of the products obtained from bromosphaerol by treatment with phosphorus oxychloride-pyridine which revealed the presence, in addition to 2, of small quantities of 3. This evidence also established the stereochemistry of 3.

EXPERIMENTAL

1H NMR spectra were run at 270 MHz with TMS as int. standard.

Isolation of 1-3. The alga (24 kg fr. wt.) collected in the spring, 1982 in the Bay of Salerno, Italy, was freeze-dried and ground to a fine powder with a blender. The dried alga (6.2 kg) was extracted with stirring for 12 hr with $CHCl_3$ (× 3). The combined solns were taken to dryness and the oily residue (20.4 g) was chromatographed on a Si gel column (2 kg) which was eluted with n-hexane. Fractions 7-10, taken to dryness, afforded 10 mg of an oily product which was rechromatographed on TLC (Si gel) using

as eluant *n*-hexane. The band at R_f 0.7 when scraped and eluted with Et₂O gave 2 mg of 1.

Fractions 13-18 were taken to dryness to afford 20 mg of a white solid which was recrystallized from EtOH; 8 mg of pure 2 was obtained.

Fractions 21–26, on evaporation, gave 10 mg of a crude product which was purified by prep. TLC (Si gel), using as eluant n-hexane. The band at R_f 0.4 when scraped and eluted with Et₂O afforded 4 mg of 3, mp 96–98°, $[\alpha]_{20}^{20}$ – 95° (CHCl₃; c 1). EIMS 70 eV, m/z: 428, 430, 432 [M]⁺; 413, 415, 417 [M – Me]⁺; 385, 387, 389 [M – C₃H₇]⁺; 349, 351 [M – Br]⁺; 335, 337 [M – CH₂Br]⁺; 269 [M – Br – HBr]⁺; 255 [M – HBr – CH₂Br]⁺. (Found: C, 55.71; H, 6.95. C₂₀H₃₀Br₂ requires: C, 55.80; H, 7.03 %.)

Dehydration of bromosphaerol. Bromosphaerol (4) (300 mg) in pyridine (5 ml) was treated with $POCl_3$ (3 ml) for 30 min at 100° . Following the usual work-up crude 2 and 3 were obtained and purified by prep. TLC (Si gel) using as eluant *n*-hexane. The bands R_f 0.55 and 0.4 were eluted with Et_2O to give 170 mg and 11 mg of 2 and 3, respectively.

REFERENCES

- 1. Fenical, W., Finer, J. and Clardy, J. (1976) Tetrahedron Letters 731
- Fattorusso, E., Magno, S., Santacroce, C., Sica, D., Di Blasio, B., Pedone, C., Impellizzeri, G., Mangiafico, S., Oriente, G., Piattelli, M. and Sciuto, S. (1976) Gazz. Chim. Ital. 106, 779.
- Cafieri, F., De Napoli, L., Fattorusso, E., Impellizzeri, G., Piattelli, M. and Sciuto, S. (1977) Experientia 33, 1549.
- Cafieri, F., De Napoli, L., Fattorusso, E., Piattelli, M. and Sciuto, S. (1979) Tetrahedron Letters 963.
- Cafieri, F., Fattorusso, E., Di Blasio, B. and Pedone, C. (1981) Tetrahedron Letters 4123.
- Cafieri, F., Ciminiello, P., Fattorusso, E. and Santacroce, C. (1982) Experientia 38, 298.
- Cafieri, F., Ciminiello, P., Santacroce, C. and Fattorusso, E. (1982) Phytochemistry 21, 2412.